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Abstract. In this paper we show an application of possibilistic stable models to 

a learning situation. Our main result is that possibilistic stable models of 

possibilistic normal programs are also possibilistic safe beliefs of such 

programs. In any learning process, the learners arrive with their previous 

knowledge. In most cases, it is incomplete or it comes with some degree of 

uncertainty. Possibilistic Logic was developed as an approach to automated 

reasoning from uncertain or prioritized incomplete information. The standard 

possibilistic expressions are classical logic formulas associated with weights. 

Logic Programming is a very important tool in Artificial Intelligence. Safe 

beliefs were introduced to study properties and notions of answer sets and 

Logic Programming from a more general point of view. The stable model 

semantics is a declarative semantics for logic programs with default negation. 

In [1], the authors present possibilistic safe beliefs. In [2], the authors introduce 

possibilistic stable models. 

Keywords. Normal logic programs, safe beliefs, possibilistic logic, possibilistic 

normal logic programs, possibilistic safe beliefs. 

1 Introduction 

In the mid 80's Dubois and Prade [3] introduced Possibilistic Logic, a logic initially 

based on classical logic, useful for modeling problems where incomplete or partially 

contradictory information exists. It deals with uncertainty in the following way: in 

order to express the extent to which the available evidence entails the truth of a 

formula which is associated to a number between 0 and 1 called its degree of 

necessity (or its certainty). If we wish to express the extent to which the truth of the 

formula is not incompatible with the available evidence we may use a degree of 

possibility. In this paper we will refer only to the degree of necessity of the formula φ, 

which is denoted by n(φ). 

Answer Set Programming is a form of declarative programming based on the stable 

semantics of logic programming. The definition of answer sets for augmented 

programs (which are a general type of programs) is based on finding minimal models 

of some reduced logic programs. Stable model semantics [4] is an answer set 

semantics for logic programs with default negation. 

In [2], the authors use possibility theory to extend the non-monotonic semantics of 

stable models for logic programs with default negation. They define a clear semantics 
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for such programs by introducing possibilistic stable models, taking into account a 

certainty level associated with each piece of knowledge. 

Any logic whose set of provable formulas lies between intuitionistic and classical 

logic (inclusive) is known as an Intermediate logic. These logics are able to 

distinguish between a and ¬¬a, a property which makes these logics suitable to 

characterize notions of logic programming. Pearce [5] established a link between 

Answer Set Programming and Intermediate Logics. The authors in [6], present an 

extension of answer sets, called safe beliefs, which they define based on intuitionistic 

logic and following ideas found in [5]. Their definition formalizes the idea that non 

monotonic inference can be achieved determining some formulas that one can safely 

believe. 

In [1], the authors develop possibilisitc safe beliefs in order to broaden the scope of 

applications. They present a characterization of possibilistic safe beliefs in terms of 

possibilistic intuitionistic logic. 

2 Background 

In this section we first introduce the syntax of logic formulas considered in this paper. 

Then we present a few basic definitions of how logics can be built to interpret the 

meaning of such formulas in order to finally give a brief introduction to the logics that 

are relevant for the results of our later sections. 

2.1 Syntax of Formulas 

We consider a formal (propositional) language built from: an enumerable set L0 of 

elements called atoms (denoted a, b, c, ...); the binary connectives   (conjunction),  

  (disjunction) and → (implication); and the unary connective ¬ (default negation). 

Formulas (denoted φ, ψ, γ, ...) are constructed as usual by combining these basic 

connectives together. 

We also use φ ↔ ψ to abbreviate (φ→ψ)   (ψ→φ) and, following the tradition in 

logic programming, φ←ψ as an alternate way of writing ψ→φ. A theory is just a set 

of formulas and, in this paper, we only consider finite theories. Moreover, if T is a 

theory, we use the notation LT to stand for the set of atoms that occur in the theory T. 

2.2 Logic Systems 

We consider a logic simply as a set of formulas that satisfies the following two 

properties: (i) is closed under modus ponens (i.e. if φ and φ → ψ are in the logic, then 

also ψ is) and (ii) is closed under substitution (i.e. if a formula φ is in the logic, then 

any other formula obtained by replacing all occurrences of an atom a in φ with 

another formula ψ is still in the logic). The elements of a logic are called theorems 

and the notation X φ is used to state that the formula φ is a theorem of the logic X 
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(i.e. φ   X). We say that a logic X is weaker than or equal to a logic Y if X Y, 

similarly we say that X is stronger than or equal to Y if Y X. 

Hilbert style proof systems. There are many different approaches that have been 

used to specify the meaning of logic formulas or, in other words, to define logics [7]. 

In Hilbert style proof systems, also known as axiomatic systems, a logic is specified 

by giving a set of axioms (which is usually assumed to be closed by substitution). 

This set of axioms specifies, so to speak, the “kernel” of the logic. The actual logic is 

obtained when this “kernel” is closed with respect to the inference rule of modus 

ponens. 

The notation X φ for provability of a logic formula φ in the logic X is usually 

extended within Hilbert style systems, given a theory T, using T X φ to denote the 

fact that the formula φ can be derived from the axioms of the logic and the formulas 

contained in T by a sequence of applications of modus ponens. 

2.3 Intuitionistic Logic 

In this subsection we will briefly introduce the intuitionistic logic that will be relevant 

for our purposes in this paper. We will present a Hilbert style definition for it. We 

start from a basic logic called Positive Logic, to which we add some axioms in order 

to obtain Intuitionistic Logic. 

 

Definition 1. Positive Logic is defined by the following set of axioms: 

Pos 1: φ → (ψ → φ) 

Pos 2: (φ → (ψ → γ)) → ((φ →ψ) → (φ → γ)) 

Pos 3: φ   ψ → φ 

Pos 4: φ   ψ → ψ 

Pos 5: φ → (ψ → (φ   ψ)) 

Pos 6: φ → (φ   ψ 

Pos 7: ψ → (φ   ψ) 

Pos 8: (φ → γ) → ((ψ → γ) → (φ   ψ → γ)) 

 

Definition 2. Intuitionistic Logic I is defined as Positive Logic plus the following 

two axioms: 

Int1: (φ→ ψ) → [(φ→ ¬ ψ) → ¬ φ] 

Int2: ¬ φ → (φ→ ψ) 

2.4 Normal Logic Programs 

In this paper, when a non empty set of atoms that determines the language of the 

programs is not given explicitly, we will consider it to be the set of atoms occurring in 

the program, so if P denotes the program then LP denotes the set of atoms under 

consideration. A normal logic program is a finite set of formulas, called rules, of the 

form r = c ← a1,...,an,¬b1,...,¬bm, where n ≥ 0, m ≥ 0, and {c,a1,...,an,b1,...,bm}LP. 
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For such a rule r we use the following notations: body
+
(r) = {a1,...,an}, body

–
(r) = 

{b1,...,bm}, head(r) = c, and r
+ 

= head(r) ← body
+
(r). 

2.5 Possibilistic Logic 

The standard possibilistic expressions of possibilistic logic are classical logic 

formulas associated with a parameter, interpreted as lower bounds of necessity 

degrees. 

A necessity-valued formula is a pair (φ α), where φ is a propositional formula in 

some given logic and α (0,1]. (φ α) expresses that φ is certain to the extent α, that is, 

N(φ)≥ α, where N is a necessity measure which models our state of knowledge. The 

constant α is known as the valuation of the formula or its weight and is represented as 

val(φ). 

To define a possibilistic logic axiomatically, we start with a logic X (in section 4, X 

will be the Intuitionistic logic, which we denote by I) and define an axiom system by 

the set of axioms {(φ 1) : φ is an axiom of X} with the following rules of inference: 

(GMP) (φ α), (φ→ψ β) PXL (ψ min{α,β}). 

(S) (φ α) PXL (φ β) if α ≥ β. 

This defines the possibilistic logic PXL. Let us point out that if (φ α) PXL (φ β), 

then α≥β, so in the case β>α will not be considered. The reasoning behind (GMP) is 

the principle that the strength of a conclusion is the strength of the weakest argument 

used in its proof. Observe that every axiom and every theorem are associated with the 

value 1. 

The following lemma can be found in [8] and we will use it in our main result. 

Lemma 1. Let Γ be a set of formulas in PXL and φX. Then Γ PXL (φ 1) if and only 

if Γ* X φ, where Γ* is the collection of formulas in Γ without the corresponding 

parameters. 

3 Possibilistic Stable Semantics 

The stable model semantics was proposed in [4] for logic programs with default 

negation, i.e., normal logic programs. In order to deal with a reasoning which is non-

monotonic and uncertain, the authors in [2] presented possibilistic stable models for 

possiblistic normal programs. We reproduce some of the main results here. 

3.1 Possibilistic Definite Logic Programs 

A possibilistic definite (logic) program is a set of possibilistic rules of the form  

r = (c←a1,...,an α), 
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where n≥0, {c,a1,...,an}LP, and α (0,1]. The classical projection of the 

possibilistic rule is r* = c←a1,...,an. The weight α is less than or equal to n(r), the 

necessity degree representing the certainty level of the information described by r. If 

R is a set of possibilistic rules, then R* = {r* : rR} is the definite logic program 

obtained by ignoring all the weights. By A  r*, we denote that r* is not a logical 

consequence of the set of formulas A. 

Definition 3.[2] Let P be a possibilistic definite program. 

– If M denotes the least Herbrand model of the definite program P*, then the 

necessity measure of an atom xLP is 

NP(x) = minAM{maxrP{n(r) : A  r*} : xA}. 

– The set {(x NP(x)) : xLP, NP(x)>0} is the possibilistic model of P. 

NP(x) evaluates the level at which x is inferred from P. Moreover, NP(x)=0 if and 

only if x does not belong to the least Herbrand model of the definite program P*, 

hence the definition of the possibilistic model of P. 

3.2 Possibilistic Normal Logic Programs 

Normal Logic Programs allow default negation, as opposed to Definite Logic 

Programs, in which all the information described is positive. A possibilistic normal 

(logic) program is a finite set of rules of the form 

r = (c←a1,...,an,¬b1,...,¬bm α), 

where n≥0, m≥0, {c,a1,...,an,b1,...,bm}LP, and α (0,1]. 

In [4], the authors define the stable model semantics for normal logic programs in 

terms of a program reduction. This reduction is extended naturally to the possibilistic 

case as follows. 

Definition 4. [2] Let P be a possibilistic normal program. 

– Let ALP*. The possibilistic reduct of P with respect to A, which we denote 

by P
A
, is the set  

{((r*)
+ 

 n(r)) : r  P, body
–
(r)∩A= }. 

– Let MLP. M is a possibilistic stable model of P if M is the possibilistic 

model of P
M*

. 

With the following lemma, the authors in [2] show that there is a one-to-one 

mapping between the possibilistic stable models of a possibilistic normal logic 

program P and the stable models of its proyection P*. We will use this fact in our 

main result. 

Lemma 2. Let P be a possibilistic normal program and MLP. If M is a possibilistic 

stable model of P then M* is a stable model of P*. 
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We will also use this result, found in [5]. 

Lemma 3. Let P be a logic program, MLP and X be an intermediate logic. M is a 

stable model of P if and only if P ¬ M
~

X M. 

In the next section, we will show that the possibilistic stable models of this 

possibilistic normal program are also its possibilistic safe beliefs. 

4 Possibilistic Safe Beliefs 

In [9], the authors present safe beliefs as an extension of answer sets in terms of 

completions of a program. In [1], the authors extend this notion to the possibilistic 

case.  We reproduce some of their findings in this section, in which a possibilistic 

theory is a finite set of possibilistic formulas. 

Definition 5. [1] Let Γ be a possibilistic theory. 

– The inconsistency degree of Γ, denoted as Incon(Γ), is defined as the 

following number: 

max{α : Γ PIL (   α)}. 

– Γ is consistent if Incon(Γ)=0. 

We note that we need to extend the domain of α from (0,1] to [0,1]. If M is a set of 

possibilistic atoms, we write 
*~

M to denote the complement of M* in LΓ*. Also, ¬¬M* 

denotes the set {¬¬x : xM*} and Γ PIL (φ α) denotes that Γ is consistent and  

Γ PIL (φ α). 

If M is any subset of LΓ we denote by (¬
*~

M 1) and (¬¬M* 1) the sets {(x 1) : x¬
*~

M } and {(x 1) : x¬¬M*}, respectively. 

It is possible to define a partial order in 2
L

Γ by defining for every M1 and M2 in 2
L

Γ, 

that M1≤M2 if the following two conditions hold: 

a) M1M2; 

b) If (φ α1)M1 then there exists (φ α2)M2 such that α2≤α1. 

Definition 6. [1] Let Γ be a possibilistic theory and M a subset of LΓ. We define M to 

be a possibilistic safe belief of P if the following conditions are met: 

– M is ≤ - minimal; 

– For every (a α)M, Γ   (¬
*~

M 1)   (¬¬
*~

M 1) PIL (a α). 

The following lemma gives us the characterization we will use in our main result. 

Lemma 4. [10] Let P be a possibilistic normal program and MLP. M is a 

possibilistic safe belief of P if and only if P (¬
*~

M 1) PIL M. 
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5 Contribution 

Our main result follows from the previous lemmas. 

Theorem 1. Let P be a possibilistic normal program and MLP. If M is a 

possibilistic stable model of P then M is a possibilistic safe belief of P. 

Proof. If M is a possibilistic stable model of P then, by lemma 2, M* is a stable model 

of P*, which is equivalent, by lemma 3, to the fact that P* ¬
*~

M I M*. Now, by 

lemma 1, we have P (¬
*~

M 1) PIL M, and therefore, by lemma 4, M is a 

possibilistic safe belief of P.  

⁪The converse of theorem 1 does not hold: it is not difficult to verify that if P is 

the possibilistic normal program defined by the possibilistic rules (a←¬b 0.5) and 

(b←¬a  0.5), and if M={(a 0.3)} then M is a possibilistic safe belief of P, but not a 

possibilistic stable model of P. 

6 Our Result and Learning Environments 

We start this section with an example derived from [2]. Suppose a certain teacher has 

a student who has a hard time focusing on more than one subject. The teacher wishes 

to give the student a Math assignment and a History assignment, for each of which the 

student has some previous knowledge. The problem is that the student can only focus 

on Math or on History, but not both. We can represent this situation with a normal 

logic program 

{a←b ¬c, c←d ¬a, e←a b, f←c d, b←, d←}, 

where the atoms a and c represent, respectively, the fact that the student uses his 

previous knowledge in Math and History; b and d represent, respectively, the fact that 

the student must complete the Math and History assignment; and e and f represent the 

fact that the student completes his assignment described by b and d, respectively. This 

normal program has two stable models, {a,b,d,e} and {b,c,d,f}. Each one of these two 

stable models represents an option for the teacher, who now wishes to evaluate the 

certainty of these two options. In order to do so, the teacher uses her expertise, 

experience, etc. to determine degrees of certainty of each rule in the program. Now, 

the task is to figure out how the certainty of the rules in the program affect the 

certainty of the option described in each stable model. 

After determining the degrees of certainty of each rule in the normal program 

{a←b ¬c, c←d ¬a, e←a b, f←c d, b←, d←}, 

the teacher comes up with the possibilistic normal program  

P={(a←b ¬c 1),(c←d ¬a 1),(e←a b 0.7),(f←c d 0.3),(b← 0.9),(d← 0.7)}. 

So she finds the necessity measures for each atom in the previous stable models, 

which result in two possibilistic stable models for P: 
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M1 = {(a 0.9), (b 0.9), (d 0.7), (e 0.7)} and M2 = {(b 0.9), (c 0.7), (d 0.7), (f 0.3)}. 

M1 tells the teacher that she can give the student the Math assignment and the student 

almost certainly completes it. The certainty degree of the student completing his 

History assignment is much less. So now, the teacher may consider other factors, such 

as the students learning styles, in order to prioritize her options. 

To end this section, let us reconsider the possibilistic normal program  

P={(a←b ¬c 1),(c←d ¬a 1),(e←a b 0.7),(f←c d 0.3),(b← 0.9),(d← 0.7)}  

and its possibilistic stable models 

M1 = {(a 0.9), (b 0.9), (d 0.7), (e 0.7)} and M2 = {(b 0.9), (c 0.7), (d 0.7), (f 0.3)}. 

It is not difficult to verify that P (¬
*

1

~
M 1) PIL M1 and that P (¬

*

2

~
M 1) PIL 

M2. Hence M1 and M2 are also possibilistic safe beliefs for P. 

7 Future Work 

Since lemma 3 applies to any logic program, not just normal logic programs, and 

lemma 4 applies to any possibilistic theory, we believe that our result may be 

extended to possibilistic disjunctive logic programs. 
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