
Possibilistic Safe Beliefs vs. Possibilistic Stable Models

Ruben Octavio Velez Salazar, Jose Arrazola Ramirez, and Ivan Martinez Ruiz

Benemérita Universidad Autónoma de Puebla, Mexico

ruvelsa@yahoo.com

Abstract. In this paper we show an application of possibilistic stable models to

a learning situation. Our main result is that possibilistic stable models of

possibilistic normal programs are also possibilistic safe beliefs of such

programs. In any learning process, the learners arrive with their previous

knowledge. In most cases, it is incomplete or it comes with some degree of

uncertainty. Possibilistic Logic was developed as an approach to automated

reasoning from uncertain or prioritized incomplete information. The standard

possibilistic expressions are classical logic formulas associated with weights.

Logic Programming is a very important tool in Artificial Intelligence. Safe

beliefs were introduced to study properties and notions of answer sets and

Logic Programming from a more general point of view. The stable model

semantics is a declarative semantics for logic programs with default negation.

In [1], the authors present possibilistic safe beliefs. In [2], the authors introduce

possibilistic stable models.

Keywords. Normal logic programs, safe beliefs, possibilistic logic, possibilistic

normal logic programs, possibilistic safe beliefs.

1 Introduction

In the mid 80's Dubois and Prade [3] introduced Possibilistic Logic, a logic initially

based on classical logic, useful for modeling problems where incomplete or partially

contradictory information exists. It deals with uncertainty in the following way: in

order to express the extent to which the available evidence entails the truth of a

formula which is associated to a number between 0 and 1 called its degree of

necessity (or its certainty). If we wish to express the extent to which the truth of the

formula is not incompatible with the available evidence we may use a degree of

possibility. In this paper we will refer only to the degree of necessity of the formula φ,

which is denoted by n(φ).

Answer Set Programming is a form of declarative programming based on the stable

semantics of logic programming. The definition of answer sets for augmented

programs (which are a general type of programs) is based on finding minimal models

of some reduced logic programs. Stable model semantics [4] is an answer set

semantics for logic programs with default negation.

In [2], the authors use possibility theory to extend the non-monotonic semantics of

stable models for logic programs with default negation. They define a clear semantics

45 Research in Computing Science 56 (2012)pp. 45–52

for such programs by introducing possibilistic stable models, taking into account a

certainty level associated with each piece of knowledge.

Any logic whose set of provable formulas lies between intuitionistic and classical

logic (inclusive) is known as an Intermediate logic. These logics are able to

distinguish between a and ¬¬a, a property which makes these logics suitable to

characterize notions of logic programming. Pearce [5] established a link between

Answer Set Programming and Intermediate Logics. The authors in [6], present an

extension of answer sets, called safe beliefs, which they define based on intuitionistic

logic and following ideas found in [5]. Their definition formalizes the idea that non

monotonic inference can be achieved determining some formulas that one can safely

believe.

In [1], the authors develop possibilisitc safe beliefs in order to broaden the scope of

applications. They present a characterization of possibilistic safe beliefs in terms of

possibilistic intuitionistic logic.

2 Background

In this section we first introduce the syntax of logic formulas considered in this paper.

Then we present a few basic definitions of how logics can be built to interpret the

meaning of such formulas in order to finally give a brief introduction to the logics that

are relevant for the results of our later sections.

2.1 Syntax of Formulas

We consider a formal (propositional) language built from: an enumerable set L0 of

elements called atoms (denoted a, b, c, ...); the binary connectives  (conjunction),

 (disjunction) and → (implication); and the unary connective ¬ (default negation).

Formulas (denoted φ, ψ, γ, ...) are constructed as usual by combining these basic

connectives together.

We also use φ ↔ ψ to abbreviate (φ→ψ)  (ψ→φ) and, following the tradition in

logic programming, φ←ψ as an alternate way of writing ψ→φ. A theory is just a set

of formulas and, in this paper, we only consider finite theories. Moreover, if T is a

theory, we use the notation LT to stand for the set of atoms that occur in the theory T.

2.2 Logic Systems

We consider a logic simply as a set of formulas that satisfies the following two

properties: (i) is closed under modus ponens (i.e. if φ and φ → ψ are in the logic, then

also ψ is) and (ii) is closed under substitution (i.e. if a formula φ is in the logic, then

any other formula obtained by replacing all occurrences of an atom a in φ with

another formula ψ is still in the logic). The elements of a logic are called theorems

and the notation X φ is used to state that the formula φ is a theorem of the logic X

46Research in Computing Science 56 (2012)

Rubén Octavio Vélez Salazar, José Arrazola Ramírez

(i.e. φ  X). We say that a logic X is weaker than or equal to a logic Y if X Y,

similarly we say that X is stronger than or equal to Y if Y X.

Hilbert style proof systems. There are many different approaches that have been

used to specify the meaning of logic formulas or, in other words, to define logics [7].

In Hilbert style proof systems, also known as axiomatic systems, a logic is specified

by giving a set of axioms (which is usually assumed to be closed by substitution).

This set of axioms specifies, so to speak, the “kernel” of the logic. The actual logic is

obtained when this “kernel” is closed with respect to the inference rule of modus

ponens.

The notation X φ for provability of a logic formula φ in the logic X is usually

extended within Hilbert style systems, given a theory T, using T X φ to denote the

fact that the formula φ can be derived from the axioms of the logic and the formulas

contained in T by a sequence of applications of modus ponens.

2.3 Intuitionistic Logic

In this subsection we will briefly introduce the intuitionistic logic that will be relevant

for our purposes in this paper. We will present a Hilbert style definition for it. We

start from a basic logic called Positive Logic, to which we add some axioms in order

to obtain Intuitionistic Logic.

Definition 1. Positive Logic is defined by the following set of axioms:

Pos 1: φ → (ψ → φ)

Pos 2: (φ → (ψ → γ)) → ((φ →ψ) → (φ → γ))

Pos 3: φ  ψ → φ

Pos 4: φ  ψ → ψ

Pos 5: φ → (ψ → (φ  ψ))

Pos 6: φ → (φ  ψ

Pos 7: ψ → (φ  ψ)

Pos 8: (φ → γ) → ((ψ → γ) → (φ  ψ → γ))

Definition 2. Intuitionistic Logic I is defined as Positive Logic plus the following

two axioms:

Int1: (φ→ ψ) → [(φ→ ¬ ψ) → ¬ φ]

Int2: ¬ φ → (φ→ ψ)

2.4 Normal Logic Programs

In this paper, when a non empty set of atoms that determines the language of the

programs is not given explicitly, we will consider it to be the set of atoms occurring in

the program, so if P denotes the program then LP denotes the set of atoms under

consideration. A normal logic program is a finite set of formulas, called rules, of the

form r = c ← a1,...,an,¬b1,...,¬bm, where n ≥ 0, m ≥ 0, and {c,a1,...,an,b1,...,bm}LP.

47 Research in Computing Science 56 (2012)

Possibilistic Safe Beliefs vs. Possibilistic Stable Models

For such a rule r we use the following notations: body
+
(r) = {a1,...,an}, body

–
(r) =

{b1,...,bm}, head(r) = c, and r
+

= head(r) ← body
+
(r).

2.5 Possibilistic Logic

The standard possibilistic expressions of possibilistic logic are classical logic

formulas associated with a parameter, interpreted as lower bounds of necessity

degrees.

A necessity-valued formula is a pair (φ α), where φ is a propositional formula in

some given logic and α (0,1]. (φ α) expresses that φ is certain to the extent α, that is,

N(φ)≥ α, where N is a necessity measure which models our state of knowledge. The

constant α is known as the valuation of the formula or its weight and is represented as

val(φ).

To define a possibilistic logic axiomatically, we start with a logic X (in section 4, X

will be the Intuitionistic logic, which we denote by I) and define an axiom system by

the set of axioms {(φ 1) : φ is an axiom of X} with the following rules of inference:

(GMP) (φ α), (φ→ψ β) PXL (ψ min{α,β}).

(S) (φ α) PXL (φ β) if α ≥ β.

This defines the possibilistic logic PXL. Let us point out that if (φ α) PXL (φ β),

then α≥β, so in the case β>α will not be considered. The reasoning behind (GMP) is

the principle that the strength of a conclusion is the strength of the weakest argument

used in its proof. Observe that every axiom and every theorem are associated with the

value 1.

The following lemma can be found in [8] and we will use it in our main result.

Lemma 1. Let Γ be a set of formulas in PXL and φX. Then Γ PXL (φ 1) if and only

if Γ* X φ, where Γ* is the collection of formulas in Γ without the corresponding

parameters.

3 Possibilistic Stable Semantics

The stable model semantics was proposed in [4] for logic programs with default

negation, i.e., normal logic programs. In order to deal with a reasoning which is non-

monotonic and uncertain, the authors in [2] presented possibilistic stable models for

possiblistic normal programs. We reproduce some of the main results here.

3.1 Possibilistic Definite Logic Programs

A possibilistic definite (logic) program is a set of possibilistic rules of the form

r = (c←a1,...,an α),

48Research in Computing Science 56 (2012)

Rubén Octavio Vélez Salazar, José Arrazola Ramírez

where n≥0, {c,a1,...,an}LP, and α (0,1]. The classical projection of the

possibilistic rule is r* = c←a1,...,an. The weight α is less than or equal to n(r), the

necessity degree representing the certainty level of the information described by r. If

R is a set of possibilistic rules, then R* = {r* : rR} is the definite logic program

obtained by ignoring all the weights. By A r*, we denote that r* is not a logical

consequence of the set of formulas A.

Definition 3.[2] Let P be a possibilistic definite program.

– If M denotes the least Herbrand model of the definite program P*, then the

necessity measure of an atom xLP is

NP(x) = minAM{maxrP{n(r) : A r*} : xA}.

– The set {(x NP(x)) : xLP, NP(x)>0} is the possibilistic model of P.

NP(x) evaluates the level at which x is inferred from P. Moreover, NP(x)=0 if and

only if x does not belong to the least Herbrand model of the definite program P*,

hence the definition of the possibilistic model of P.

3.2 Possibilistic Normal Logic Programs

Normal Logic Programs allow default negation, as opposed to Definite Logic

Programs, in which all the information described is positive. A possibilistic normal

(logic) program is a finite set of rules of the form

r = (c←a1,...,an,¬b1,...,¬bm α),

where n≥0, m≥0, {c,a1,...,an,b1,...,bm}LP, and α (0,1].

In [4], the authors define the stable model semantics for normal logic programs in

terms of a program reduction. This reduction is extended naturally to the possibilistic

case as follows.

Definition 4. [2] Let P be a possibilistic normal program.

– Let ALP*. The possibilistic reduct of P with respect to A, which we denote

by P
A
, is the set

{((r*)
+

 n(r)) : r P, body
–
(r)∩A= }.

– Let MLP. M is a possibilistic stable model of P if M is the possibilistic

model of P
M*

.

With the following lemma, the authors in [2] show that there is a one-to-one

mapping between the possibilistic stable models of a possibilistic normal logic

program P and the stable models of its proyection P*. We will use this fact in our

main result.

Lemma 2. Let P be a possibilistic normal program and MLP. If M is a possibilistic

stable model of P then M* is a stable model of P*.

49 Research in Computing Science 56 (2012)

Possibilistic Safe Beliefs vs. Possibilistic Stable Models

We will also use this result, found in [5].

Lemma 3. Let P be a logic program, MLP and X be an intermediate logic. M is a

stable model of P if and only if P ¬ M
~

X M.

In the next section, we will show that the possibilistic stable models of this

possibilistic normal program are also its possibilistic safe beliefs.

4 Possibilistic Safe Beliefs

In [9], the authors present safe beliefs as an extension of answer sets in terms of

completions of a program. In [1], the authors extend this notion to the possibilistic

case. We reproduce some of their findings in this section, in which a possibilistic

theory is a finite set of possibilistic formulas.

Definition 5. [1] Let Γ be a possibilistic theory.

– The inconsistency degree of Γ, denoted as Incon(Γ), is defined as the

following number:

max{α : Γ PIL ( α)}.

– Γ is consistent if Incon(Γ)=0.

We note that we need to extend the domain of α from (0,1] to [0,1]. If M is a set of

possibilistic atoms, we write
*~

M to denote the complement of M* in LΓ*. Also, ¬¬M*

denotes the set {¬¬x : xM*} and Γ PIL (φ α) denotes that Γ is consistent and

Γ PIL (φ α).

If M is any subset of LΓ we denote by (¬
*~

M 1) and (¬¬M* 1) the sets {(x 1) : x¬
*~

M } and {(x 1) : x¬¬M*}, respectively.

It is possible to define a partial order in 2
L

Γ by defining for every M1 and M2 in 2
L

Γ,

that M1≤M2 if the following two conditions hold:

a) M1M2;

b) If (φ α1)M1 then there exists (φ α2)M2 such that α2≤α1.

Definition 6. [1] Let Γ be a possibilistic theory and M a subset of LΓ. We define M to

be a possibilistic safe belief of P if the following conditions are met:

– M is ≤ - minimal;

– For every (a α)M, Γ  (¬
*~

M 1)  (¬¬
*~

M 1) PIL (a α).

The following lemma gives us the characterization we will use in our main result.

Lemma 4. [10] Let P be a possibilistic normal program and MLP. M is a

possibilistic safe belief of P if and only if P (¬
*~

M 1) PIL M.

50Research in Computing Science 56 (2012)

Rubén Octavio Vélez Salazar, José Arrazola Ramírez

5 Contribution

Our main result follows from the previous lemmas.

Theorem 1. Let P be a possibilistic normal program and MLP. If M is a

possibilistic stable model of P then M is a possibilistic safe belief of P.

Proof. If M is a possibilistic stable model of P then, by lemma 2, M* is a stable model

of P*, which is equivalent, by lemma 3, to the fact that P* ¬
*~

M I M*. Now, by

lemma 1, we have P (¬
*~

M 1) PIL M, and therefore, by lemma 4, M is a

possibilistic safe belief of P.

⁪The converse of theorem 1 does not hold: it is not difficult to verify that if P is

the possibilistic normal program defined by the possibilistic rules (a←¬b 0.5) and

(b←¬a 0.5), and if M={(a 0.3)} then M is a possibilistic safe belief of P, but not a

possibilistic stable model of P.

6 Our Result and Learning Environments

We start this section with an example derived from [2]. Suppose a certain teacher has

a student who has a hard time focusing on more than one subject. The teacher wishes

to give the student a Math assignment and a History assignment, for each of which the

student has some previous knowledge. The problem is that the student can only focus

on Math or on History, but not both. We can represent this situation with a normal

logic program

{a←b ¬c, c←d ¬a, e←a b, f←c d, b←, d←},

where the atoms a and c represent, respectively, the fact that the student uses his

previous knowledge in Math and History; b and d represent, respectively, the fact that

the student must complete the Math and History assignment; and e and f represent the

fact that the student completes his assignment described by b and d, respectively. This

normal program has two stable models, {a,b,d,e} and {b,c,d,f}. Each one of these two

stable models represents an option for the teacher, who now wishes to evaluate the

certainty of these two options. In order to do so, the teacher uses her expertise,

experience, etc. to determine degrees of certainty of each rule in the program. Now,

the task is to figure out how the certainty of the rules in the program affect the

certainty of the option described in each stable model.

After determining the degrees of certainty of each rule in the normal program

{a←b ¬c, c←d ¬a, e←a b, f←c d, b←, d←},

the teacher comes up with the possibilistic normal program

P={(a←b ¬c 1),(c←d ¬a 1),(e←a b 0.7),(f←c d 0.3),(b← 0.9),(d← 0.7)}.

So she finds the necessity measures for each atom in the previous stable models,

which result in two possibilistic stable models for P:

51 Research in Computing Science 56 (2012)

Possibilistic Safe Beliefs vs. Possibilistic Stable Models

M1 = {(a 0.9), (b 0.9), (d 0.7), (e 0.7)} and M2 = {(b 0.9), (c 0.7), (d 0.7), (f 0.3)}.

M1 tells the teacher that she can give the student the Math assignment and the student

almost certainly completes it. The certainty degree of the student completing his

History assignment is much less. So now, the teacher may consider other factors, such

as the students learning styles, in order to prioritize her options.

To end this section, let us reconsider the possibilistic normal program

P={(a←b ¬c 1),(c←d ¬a 1),(e←a b 0.7),(f←c d 0.3),(b← 0.9),(d← 0.7)}

and its possibilistic stable models

M1 = {(a 0.9), (b 0.9), (d 0.7), (e 0.7)} and M2 = {(b 0.9), (c 0.7), (d 0.7), (f 0.3)}.

It is not difficult to verify that P (¬
*

1

~
M 1) PIL M1 and that P (¬

*

2

~
M 1) PIL

M2. Hence M1 and M2 are also possibilistic safe beliefs for P.

7 Future Work

Since lemma 3 applies to any logic program, not just normal logic programs, and

lemma 4 applies to any possibilistic theory, we believe that our result may be

extended to possibilistic disjunctive logic programs.

References

1. Estrada O., Arrazola J., Osorio M.: Possibilistic Safe Beliefs. LANMR 2010 (2010)

2. Nicolas P., Garcia L., Stephan I., Lefevre C.: Possibilistic uncertainty handling for answer

set programming. Annals of Mathematics and Artificial Intelligence, Springer (2006)

3. Dubois D., Lang J., Prade H.: Possibilistic Logic. In: Gabbay D, Hogger C, Robinson J.

(eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 3,

Clarendon Press Oxford (1994)

4. Gelfond M., Lifschitz V.: The Stable Model Semantics for Logic Programming. Fifth

Conference on Logic Programming, MIT Press (1988)

5. Pierce D.: Stable Inference as Intuitionistic Validity. Logic Programming, 38 (1999)

6. Osorio M, Navarro J., Arrazola J.: Applications of Intuitionistic Logic in Answer Set

Programming. Theory and Practice of Logic Programming (2004)

7. Mendelson E., Introduction to Mathematical Logic, CRC Press, Fifth Edition (2010)

8. Velez R., Arrazola J., Martinez, I.: Semantics for Some Non-Classical Possibilistic Logic.

Under revision for publishing (2013)

9. Osorio M., Navarro J., Arrazola J.: Safe Beliefs for Propositional Theories. Annals of Pure

and Applied Logic, Elsevier (2004)

10. Estrada E., Arrazola J., Osorio, M.: Possibilistic Intermediate Logic, International Journal

of Advanced Intelligence Paradigms (IJAIP), Vol. 4, No. 2 (2012)

52Research in Computing Science 56 (2012)

Rubén Octavio Vélez Salazar, José Arrazola Ramírez

